Déterminer `abs(x+y) `
On a ` x = sqrt(3) -1 ` et ` y = 1/(1-sqrt(5)) = - (1+sqrt(5))/4 `
` x +y = sqrt(3) -1 - (1+sqrt(5))/4 `
` = (4(sqrt(3) -1) - (1+sqrt(5)) )/4 `
` = (4sqrt(3) -4 - (1+sqrt(5)))/4 `
` = (4sqrt(3) -4 - 1- sqrt(5))/4 `
` = (4sqrt(3) - 5 -sqrt(5))/4 `
` = (4sqrt(3) -(5+sqrt(5)))/4 `
Etudions le signe de `4sqrt(3) - (5+sqrt(5))`
On a `(4sqrt(3))^2 = 4^2 xxsqrt(3)^2 = 16 xx3 = 48 `
on a ` (5 +sqrt(5))^2 = 5^2 +2xx5xxsqrt(5) + sqrt(5)^2 = 25+5 +10sqrt(5) = 30 +10sqrt(5) `
on a ` 48 - (30+10sqrt(5)) = 18 -10sqrt(5) `
comme `18^2 = 324` et ` (10sqrt(5))^2 = 10^2xxsqrt(5)^2 = 100xx 5 = 500 `
alors ` (10sqrt(5))^2 > 18^2 `
`=> 10sqrt(5) > 18 `
`=> 18 -10sqrt(5) < 0 `
`=> 48 - (30+10sqrt(5)) < 0 `
`=> (4sqrt(3))^2 - (5 +sqrt(5))^2 < 0 `
`=> (4sqrt(3))^2 < (5 +sqrt(5))^2 `
` => (4sqrt(3) -(5+sqrt(5)))/4 < 0 `
`=> x +y < 0 `
et par suite ` abs(x+y)= -(x+y) = - (4sqrt(3) -(5+sqrt(5)))/4 = ( 5+sqrt(5) -4sqrt(3))/4 `